Towards a Formal Specification of Production Processes Suitable for Automatic Execution

Author:

Vještica Marko1,Dimitrieski Vladimir1,Pisarić Milan2,Kordić Slavica1,Ristić Sonja1,Luković Ivan1

Affiliation:

1. University of Novi Sad , Faculty of Technical Sciences , Novi Sad , Serbia

2. Industrial Automation, KEBA AG Linz , Austria

Abstract

Abstract Technological advances and increasing customer need for highly customized products have triggered a fourth industrial revolution. A digital revolution in the manufacturing industry is enforced by introducing smart devices and knowledge bases to form intelligent manufacturing information systems. One of the goals of the digital revolution is to allow flexibility of smart factories by automating shop floor changes based on the changes in input production processes and ordered products. In order to make this possible, a formal language to describe production processes is needed, together with a code generator for its models and an engine to execute the code on smart devices. Existing process modeling languages are not usually tailored to model production processes, especially if models are needed for automatic code generation. In this paper we propose a research on Industry 4.0 manufacturing using a Domain-Specific Modeling Language (DSML) within a Model-Driven Software Development (MDSD) approach to model production processes. The models would be used to generate instructions to smart devices and human workers, and gather a feedback from them during the process execution. A pilot comparative analysis of three modeling languages that are commonly used for process modeling is given with the goal of identifying supported modeling concepts, good practices and usage patterns.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3