Numerical Simulation and Experimental Research on Material Parameters Solution and Shape Control of Sandwich Panels with Aluminum Honeycomb

Author:

Li Dongsheng1,Wang Mingming1,Zhou Xianbin1

Affiliation:

1. Beihang University,School of Mechanical Engineering & Automation Beijing , 100083 , China

Abstract

Abstract This paper aims to solve two problems of the sandwich panel with aluminum honeycomb: material parameters solution and shape control. The accurate material parameters of the sandwich panels are the basis of shape control. Therefore, a mixed numerical-experimental method is proposed to inversely solve equivalent material parameters of the sandwich panel using genetic algorithm (GA) in the first place. Then a high efficiency FE model based on equivalent material parameters is established to study shape control of the sandwich panels. For shape control, the key issue aims to search optimum position and adjustment volume of control points where actuators are installed. Toward the end, the FE simulation method is deployed to optimize actuator position and adjustment volume one by one. Finally, an active control platform based on multi-point adjustment is developed to verify the practicability of the approach proposed in this paper. Through the experiment of shape control, the root mean square (RMS) of surface deviation of sandwich panel is decreased from 62.7μm to 15.5μm. The results show that the shape control can significantly improve the surface accuracy of the sandwich panels, and the validity of equivalent material parameters is also proved from the side.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation on the Effects of Cutting Angles on the Burrs of Carbon Fiber Honeycomb Composites;International Journal of Precision Engineering and Manufacturing;2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3