Mice can recognise water depths and will avoid entering deep water

Author:

Ueno Hiroshi1,Takahashi Yu2,Suemitsu Shunsuke2,Murakami Shinji2,Kitamura Naoya2,Wani Kenta2,Matsumoto Yosuke3,Okamoto Motoi4,Ishihara Takeshi2

Affiliation:

1. Department of Medical Technology, Kawasaki University of Medical Welfare , Okayama 701-0193 , Japan

2. Department of Psychiatry, Kawasaki Medical School , Kurashiki 701-0192 , Japan

3. Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama 700-8558 , Japan

4. Department of Medical Technology, Graduate School of Health Sciences, Okayama University , Okayama 700-8558 , Japan

Abstract

Abstract Rodents are averse to bodies of water, and this aversion has been exploited in experiments designed to study stress in mice. However, a few studies have elucidated the characteristics of murine water aversion. In this study, we investigated how mice behave in and around areas filled with water. Using variants of the open field test that contained pools of water at corners or sides of the field, we recorded the movements of mice throughout the field under various conditions. When the water was 8 mm deep, the mice explored the water pool regardless of whether an object was placed within it, but when the water was 20 mm deep, the mice were less willing to enter it. When the mice were placed on a dry area surrounded by 3 mm-deep water, they explored the water, but when they were surrounded by 8 mm-deep water, they stayed within the dry area. Our results indicate that mice exhibit exploratory behaviours around water, they can recognise water depths and avoid unacceptably deep water, and their willingness to enter water may be reduced by situational anxiety. Our experimental method could be used to investigate water-related anxiety-like behaviours in mice.

Publisher

Walter de Gruyter GmbH

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3