On the problem of prescribing weighted scalar curvature and the weighted Yamabe flow

Author:

Ho Pak Tung1,Shin Jinwoo2

Affiliation:

1. Department of Mathematics, Tamkang University , Tamsui , New Taipei City 251301 , Taiwan

2. Korea Institute for Advanced Study , Hoegiro 85 , Seoul 02455 , Korea

Abstract

Abstract The weighted Yamabe problem introduced by Case is the generalization of the Gagliardo-Nirenberg inequalities to smooth metric measure spaces. More precisely, given a smooth metric measure space ( M , g , e ϕ d V g , m ) \left(M,g,{e}^{-\phi }{\rm{d}}{V}_{g},m) , the weighted Yamabe problem consists on finding another smooth metric measure space conformal to ( M , g , e ϕ d V g , m ) \left(M,g,{e}^{-\phi }{\rm{d}}{V}_{g},m) such that its weighted scalar curvature is equal to λ + μ e ϕ m \lambda +\mu {e}^{-\phi /m} for some constants μ \mu and λ \lambda , satisfying a certain condition. In this article, we consider the problem of prescribing the weighted scalar curvature. We first prove some uniqueness and nonuniqueness results and then some existence result about prescribing the weighted scalar curvature. We also estimate the first nonzero eigenvalue of the weighted Laplacian of ( M , g , e ϕ d V g , m ) \left(M,g,{e}^{-\phi }{\rm{d}}{V}_{g},m) . On the other hand, we prove a version of the conformal Schwarz lemma on ( M , g , e ϕ d V g , m ) \left(M,g,{e}^{-\phi }{\rm{d}}{V}_{g},m) . All these results are achieved by using geometric flows related to the weighted Yamabe flow. We also prove the backward uniqueness of the weighted Yamabe flow. Finally, we consider weighted Yamabe solitons, which are the self-similar solutions of the weighted Yamabe flow.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Geometry and Topology,Analysis

Reference59 articles.

1. A. Abolarinwa, C. Yang, and D. Zhang, In the spectrum of the p-biharmonic operator under the Ricci flow, Results Math. 75 (2020), no. 2, Paper no. 54, 16 pp.

2. T. Aubin, Équations différentielles non linéaires et probléme de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. (9) 55 (1976), no. 3, 269–296.

3. S. Azami, Evolution of the first eigenvalue of weighted p-Laplacian along the Ricci-Bourguignon flow, New York J. Math. 26 (2020), 735–755.

4. S. Brendle, Convergence of the Yamabe flow for arbitrary initial energy, J. Differential Geom. 69 (2005), no. 2, 217–278.

5. S. Brendle, Convergence of the Yamabe flow in dimension 6 and higher, Invent. Math. 170 (2007), no. 3, 541–576.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weighted Yamabe Solitons;Results in Mathematics;2023-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3