Affiliation:
1. Kogakuin University , 2665-1, Nakano , Hachioji , Tokyo , 192-0015 Japan
Abstract
Abstract
For any real number
κ
\kappa
and any integer
n
≥
4
n\ge 4
, the
Cycl
n
(
κ
)
{{\rm{Cycl}}}_{n}\left(\kappa )
condition introduced by Gromov (CAT(κ)-spaces: construction and concentration, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), (Geom. i Topol. 7), 100–140, 299–300) is a necessary condition for a metric space to admit an isometric embedding into a
CAT
(
κ
)
{\rm{CAT}}\left(\kappa )
space. For geodesic metric spaces, satisfying the
Cycl
4
(
κ
)
{{\rm{Cycl}}}_{4}\left(\kappa )
condition is equivalent to being
CAT
(
κ
)
{\rm{CAT}}\left(\kappa )
. In this article, we prove an analogue of Reshetnyak’s majorization theorem for (possibly non-geodesic) metric spaces that satisfy the
Cycl
4
(
κ
)
{{\rm{Cycl}}}_{4}\left(\kappa )
condition. It follows from our result that for general metric spaces, the
Cycl
4
(
κ
)
{{\rm{Cycl}}}_{4}\left(\kappa )
condition implies the
Cycl
n
(
κ
)
{{\rm{Cycl}}}_{n}\left(\kappa )
conditions for all integers
n
≥
5
n\ge 5
.
Subject
Applied Mathematics,Geometry and Topology,Analysis
Reference18 articles.
1. S. Alexander, V. Kapovitch, and A. Petruninm, Alexandrov meets Kirszbraun, in: Proceedings of the Gökova Geometry-Topology Conference 2010. Int. Press, Somerville, MA, 2011, pp. 88–109.
2. S. Alexander, V. Kapovitch, and A. Petrunin, Alexandrov Geometry: Foundations, 2022, https://arxiv.org/abs/1903.08539.
3. A. Andoni, A. Naor, and O. Neiman, Snowflake universality of Wasserstein spaces, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), no. 3, 657–700.
4. N. Ballmann, Lectures on Spaces of Nonpositive Curvature, Vol. 25, DMV Sminar. With an appendix by Misha Brin, 1995.
5. I. D. Berg and I. G. Nikolaev, Quasilinearization and curvature of Aleksandrov spaces, Geom. Dedicata 133 (2008), 195–218.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Trees meet octahedron comparison;Journal of Topology and Analysis;2023-07-24
2. Graph Comparison Meets Alexandrov;Siberian Mathematical Journal;2023-05