Ray tracing-based delay model for compensating gravitational deformations of VLBI radio telescopes

Author:

Lösler Michael1ORCID,Eschelbach Cornelia1ORCID,Greiwe Ansgar2,Brechtken Rainer2,Plötz Christian3,Kronschnabl Gerhard3,Neidhardt Alexander4

Affiliation:

1. Laboratory for Industrial Metrology, Faculty 1: Architecture, Civil Engineering, Geomatics, Frankfurt University of Applied Sciences, Nibelungenplatz 1 , 60318 Frankfurt am Main , Germany

2. Department of Geodesy, Bochum University of Applied Sciences, Am Hochschulcampus 1 , 44801 Bochum , Germany

3. Geodetic Observatory Wettzell, G 5: Microwave Techniques, Federal Agency for Cartography and Geodesy, Sackenrieder Straße 25 , 93444 Bad Kötzting , Germany

4. Department of Aerospace and Geodesy, Technical University of Munich, Geodetic Observatory Wettzell, Sackenrieder Straße 25 , 93444 Bad Kötzting , Germany

Abstract

AbstractThe precision and the reliability of very long baseline interferometry (VLBI) depend on several factors. Apart from fabrication discrepancies or meteorological effects, gravity-induced deformations of the receiving unit of VLBI radio telescopes are identified as a crucial error source biasing VLBI products and obtained results such as the scale of a realized global geodetic reference frame. Gravity-induced deformations are systematical errors and yield signal path variations (SPVs). In 1988, Clark and Thomsen derived a VLBI delay model, which was adopted by the International VLBI Service for Geodesy and Astrometry (IVS) to reduce these systematic errors. However, the model parametrizes the SPV by a linear substitute function and considers only deformations acting rotationally symmetrically. The aim of this investigation is to derive the signal path variations of a legacy radio telescope and a modern broadband VGOS-specified radio telescope and to study the effect of nonrotationally symmetric deformation patterns. For that purpose, SPVs are obtained from a nonlinear spatial ray tracing approach. For the first time, a tilt and a displacement of the subreflector perpendicular to the optical axis of the feed unit is taken into account. The results prove the commonly used VLBI delay model as a suitable first-order delay model to reduce gravity-induced deformations.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geophysics,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3