Recent and future manifestations of a contingent global mean sea level acceleration

Author:

İz H. Bâki1,Shum C.K.1

Affiliation:

1. Division of Geodetic Science, School of Earth Sciences , The Ohio State University , Columbus, Ohio, USA

Abstract

Abstract We analyzed globally averaged satellite altimetry mean sea level time series during 1993 – 2018 and their future manifestations for the following 25 years using a kinematic model, which consists of a trend, a contingent uniform acceleration, and a random error model. The analysis of variance results shows that the model explains 71.7% of the total variation in global mean sea level for which 70.6% is by the secular trend, and 1.07% is due to a contingent uniform acceleration. The remaining 28.3% unexplained variation is due to the random errors, which are dominated by a first order autoregressive process driven mostly by oceanic and atmospheric variations over time. These numbers indicate more bumps and jumps for the future manifestations of the global mean sea level anomalies as illustrated using a one-step ahead predictor in this study. Our findings suggest preponderant random errors are poised to further confound and negatively impact the certitude of published estimates of the uniform global sea level acceleration as well as its prediction under an increasingly warmer Earth.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geophysics,Astronomy and Astrophysics

Reference19 articles.

1. Ablain M., Meyssignac B., Zawadzki L., Jugier R., Ribes A., Spada G., Benveniste J., Cazenave A., and Picot N., 2019, Uncertainty in satellite estimate of global mean sea level changes, trend and acceleration, Earth Syst. Sci. Data, 11, 1189–1202.

2. Bibby J. and H. Tautenburg, 1977, Prediction and Improved Estimation in Linear Models, John Wiley and Sons, pgs. 188.

3. Bray D., and H. von Storch, (2009), “Prediction” or “Projection”? The Nomenclature of Climate Science - Science Communication Vol. 30(4), pgs. 534–543.

4. Beckley, B., Zelensky, N.P. Holmes, S.A., Lemoine, F.G., Ray, R.D., Mitchum, G.T., Desai, S., Brown, S.T., 2016: Global Mean Sea Level Trend from Integrated Multi-Mission Ocean Altimeters TOPEX/Poseidon Jason-1 and OSTM/Jason-2 Version 4.2. Ver. 4.2. PO.DAAC, CA, USA. Dataset accessed [2018-09-02] at http://dx.doi.org/10.5067/GMSLM-TJ142.

5. Schaffrin, B., (1983), Model Choice and Adjustment Techniques in the Presence of Prior Information, NASA, Grant No. NSG 5265, OSURF Proj. No. 711055, 37 pp.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3