Comparative crosstalk performance analysis of different configurations of heterogeneous multicore fiber
Author:
Farooque Umar12, Ranjan Rakesh1
Affiliation:
1. Optical Fiber Communication and Photonics Laboratory, Department of Electronics and Communication Engineering , National Institute of Technology , Patna , Bihar , 800005, India 2. Department of Electronics and Communication Engineering , Muzaffarpur Institute of Technology , Muzaffarpur , Bihar , 842003, India
Abstract
Abstract
In order to select the heterogeneous multicore fiber (MCF) configuration with ultra-low crosstalk and low peak bending radius, comparative crosstalk analysis have been done for the three possible core configurations, namely, Configuration 1 - different refractive index (R.I.) and different radius, Configuration 2 - different R.I., and Configuration 3 - different radius. Using the coupled mode equation and the simplified expressions of mode coupling coefficient (MCC) for different configurations of heterogeneous cores, the crosstalk performance of all the heterogeneous MCF configurations along with the homogeneous MCF have been investigated analytically with respect to core pitch (D) and fiber bending radius (
R
b
${R}_{b}$
). Further, these expressions of MCC have been extended to obtain the simplified expressions of MCC for the estimation of crosstalk levels in respective trench-assisted (TA) heterogeneous MCF configurations. It is observed from the analysis that in Configuration 1, crosstalk level is lowest and the rate of decrease in the crosstalk with respect to the core pitch is highest compared to the other configurations of heterogeneous MCF. The values of crosstalk obtained analytically have been validated by comparing it with the values obtained from finite element method (FEM) based numerical simulation results. Further, we have investigated the impact of a fixed percent change (5%) in the core parameters (radius and/or R.I.) of one of the core of a homogeneous MCF, to realize the different heterogeneous MCF configurations, on the variations in crosstalk levels, difference in the mode effective refractive index of the core 1 and core 2 (
Δ
n
e
f
f
=
n
e
f
f
1
−
n
e
f
f
2
$\Delta {n}_{eff}={n}_{eff1}-{n}_{eff2}$
), and the peak bending radius (
R
p
k
${R}_{pk}$
). For the same percent variations (5%) in the core parameters (radius and/or R.I.) of different configurations of cores (Config. 1-Config. 3), Config. 1 MCF has highest variation in
Δ
n
e
f
f
$\Delta {n}_{eff}$
value compared to other configurations of MCF. Further, this highest variation in
Δ
n
e
f
f
$\Delta {n}_{eff}$
value of Config. 1 MCF results in smallest peak bending radius. The smaller value of peak bending radius allows MCF to bend into smaller radius. Therefore, Configuration 1 is the potential choice for the design of MCF with smaller peak bending radius and ultra-low crosstalk level compared to the other configurations of SI-heterogeneous MCF.
Funder
Science and Engineering Research Board, Department of Science and Technology, Govt. of India
Publisher
Walter de Gruyter GmbH
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Reference23 articles.
1. Essiambre, RJ, Kramer, G, Winzer, PJ, Foschini, GJ, Goebel, B. Capacity limits of optical fiber networks. J Lightwave Techno 2010;28:662–1. https://doi.org/10.1364/ofc.2009.othl1. 2. Morioka, T. New generation optical infrastructure technologies: EXAT initiative towards 2020 and beyond. In: Proceedings of 14th OptoElectronics and Communication Conference (OECC), 2009; 1–2, paper FT4. 3. Saitoh, K, Matsuo, S. Multicore fiber technology. J Lightwave Technol 2016;34:55–66. https://doi.org/10.1364/ofc.2015.th4c.1. 4. Puttnam, BJ, Luís, RS, Klaus, W, Sakaguchi, J, Delgado Mendinueta, JM, Awaji, Y, et al. 2.15 Pb/s transmission using a 22 core homogeneous single mode multicore fiber and wideband optical comb. In: Proceedings of European Conference on Optical Communication (ECOC), Valencia 2015; 1–3. 5. Koshiba, M, Saitoh, K, Kokubun, Y. Heterogeneous multi-core fibers: proposal and design principle. IEICE Elect Exp 2009;6:98–103. https://doi.org/10.1587/elex.6.98.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|