The weak eigenfunctions of boundary-value problem with symmetric discontinuities

Author:

Olğar Hayati1ORCID,Mukhtarov Oktay S.2ORCID,Muhtarov Fahreddin S.3ORCID,Aydemir Kadriye4ORCID

Affiliation:

1. Department of Mathematics , Faculty of Science , Tokat Gaziosmanpaşa University , Tokat , Turkey

2. Department of Mathematics , Faculty of Science , Tokat Gaziosmanpaşa University , Tokat , Turkey ; and Institute of Mathematics and Mechanics, National Academy of Sciences, Baku, Azerbaijan

3. Institute of Mathematics and Mechanics , National Academy of Sciences , Baku , Azerbaijan

4. Department of Mathematics , Faculty of Arts and Science , Amasya University , Amasya , Turkey

Abstract

Abstract The main goal of this study is the investigation of discontinuous boundary-value problems for second-order differential operators with symmetric transmission conditions. We introduce the new notion of weak functions for such type of discontinuous boundary-value problems and develop an operator-theoretic method for the investigation of the spectrum and completeness property of the weak eigenfunction systems. In particular, we define some self-adjoint compact operators in suitable Sobolev spaces such that the considered problem can be reduced to an operator-pencil equation. The main result of this paper is that the spectrum is discrete and the set of eigenfunctions forms a Riesz basis of the suitable Hilbert space.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Mathematical Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fractional Dirac system with impulsive conditions;Chaos, Solitons & Fractals;2023-11

2. Titchmarsh–Weyl theory for impulsive q-Dirac equation;International Journal of Geometric Methods in Modern Physics;2023-10-20

3. Titchmarsh–Weyl Theory for Impulsive Dynamic Dirac System;Qualitative Theory of Dynamical Systems;2023-08-10

4. On completeness of weak eigenfunctions for multi-interval Sturm-Liouville equations with boundary-interface conditions;Demonstratio Mathematica;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3