Predicting compressor mass flow rate using various machine learning approaches

Author:

Yazar Isil1ORCID,Anagun Yildiray2,Isik Sahin2

Affiliation:

1. Department of Aeronautical Engineering, Faculty of Engineering and Architecture , 53004 Eskisehir Osmangazi University , Eskisehir , Türkiye

2. Department of Computer Engineering, Faculty of Engineering and Architecture , 53004 Eskisehir Osmangazi University , Eskisehir , Türkiye

Abstract

Abstract A major focus of the present study is to construct high-fidelity models for predicting corrected mass flow rates based on the collected compressor map data. Both traditional machine learning research and modern deep learning techniques have been employed to obtain well-fitted regression models of compressor mass flow rate. As traditional machine learning methods, Multiple Linear Regression and Random Forest, are conducted on compressor maps for prediction of corrected mass flow rate. The time series-based deep learning models are able to capture the overall trend of a given input for specific map data. Therefore, a time series-based deep learning technique, namely Gated Recurrent Unit has been employed to improve regression results. Besides, the prediction capabilities of the models, results also show that the proposed models can be used for the development of dynamic aero-thermal mathematical models of gas turbine engines and mass flow rate models created for dynamic compressors in other disciplines.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3