Affiliation:
1. The College of Materials Science and Engineering , Nanjing Forestry University , Nanjing 210037 , P.R. China
Abstract
Abstract
High voltage electrostatic field (HVEF) treatment has been investigated as an optimization method for enhancing the bonding performance of wood via increasing its polarization degree and improvement of the penetration of phenol formaldehyde (PF) adhesive. As the wood surfaces from cross cut (C), radial cut (R) and tangential cut (T) behave differently, five cut combinations formed the samples to be tested, namely C-C, R-R, R-T, T-T (always parallel to grain) and T-T⊥, where the grains were perpendicular to each other. The gluing and HVEF treatments were performed simultaneously. The sample surfaces were characterized by electron spin resonance (ESR) spectroscopy, dynamic contact angle (CAdyn) measurements, X-ray densitometry, fluorescence microscopy, Fourier-transform infrared (FTIR) spectroscopy and measurements of compression shear bonding strength (CSBS). An increased surface energy led to decreased CAdynS in the following order: cross section<tangential section<radial section. Obviously, the triggered free electrons of the HVEF treatments changed the wood surfaces. The penetration depth of PF into wood cell decreased significantly and the maximal density increased after the HVEF treatment. The lower CAdyns also contributed to the better reaction of the wood surface with the PF resin. The CSBS of the five sample combinations was enhanced owing to a better performance of adhesive aggregation, which was increased by 18% (C-C), 24% (T-T), 26% (T-T⊥), 31% (R-T) and 42% (R-R), respectively. Pore size and pore size distribution contributed a lot to the bonding properties of HVEF-treated wood sections.
Reference52 articles.
1. Altgen, D., Avramidis, G., Viöl, W., Mai, C. (2016) The effect of air plasma treatment at atmospheric pressure on thermally modified wood surfaces. Wood Sci. Technol. 50:1–15.
2. Arun, N., Sharma, A., Shenoy, V.B., Narayan, K.S. (2006) Electric-field-controlled surface instabilities in soft elastic films. Adv. Mater. 18:660–663.
3. Atayde, C.M., Gonçalez, J.C., Camargos, J.A. (2011) Colorimetric characteristics of different anatomical sections of muirapiranga (Brosimum sp.) wood. Cerne 17:231–235.
4. Bachtiar, E.V., Clerc, G., Brunner, A.J., Kaliske, M., Niemz, P. (2017) Static and dynamic tensile shear test of glued lap wooden joint with four different types of adhesives. Holzforschung 71:391–396.
5. Bao, F., Zhao, Y., Zhao, Y., Lv, J. (2003) Relationship between permeability and fine structure of common Chinese fir and Masson pine wood. J. B. Forestry Univ. 2:1–5.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献