Author:
Veerman Enno C.I.,Valentijn-Benz Marianne,van't Hof Wim,Nazmi Kamran,van Marle Jan,Nieuw Amerongen Arie V.
Abstract
Abstract
The mechanism of action of phytosphingosine (PHS), a member of the sphingosine family which has candidacidal activity when added externally, was investigated. Previously, it has been reported that the fungicidal activity of PHS is based on the induction of caspase-independent apoptosis. In contrast, we found that addition of PHS causes a direct permeabilization of the plasma membrane of yeast, highlighted by the influx of the membrane probe propidium iodide, and the efflux of small molecules (i.e., adenine nucleotides) as well as large cellular constituents such as proteins. Freeze-fracture electron microscopy revealed that PHS treatment causes severe damage of the plasma membrane of the cell, which seems to have lost its integrity completely. We also found that PHS reverts the azide-induced insensitivity to histatin 5 (Hst5) of Candida albicans. In a previous study, we had found that the decreased sensitivity to Hst5 of energy-depleted cells is due to rigidification of the plasma membrane, which could be reverted by the membrane fluidizer benzyl alcohol. In line with the increased membrane permeabilization and ultrastructural damage, this reversal of the azide-induced insensitivity by PHS also points to a direct interaction between PHS and the cytoplasmic membrane of C. albicans.
Subject
Clinical Biochemistry,Molecular Biology,Biochemistry
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献