Application of the micronucleus assay performed by different scorers in case of large-scale radiation accidents

Author:

Rawojć Kamila1,Tarnawska Dorota M.1,Miszczyk Justyna U.2,Swakoń Jan3,Stolarczyk Liliana3,Rydygier Marzena3

Affiliation:

1. Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza Str., 30-348 Krakow, Poland, Tel.: +48 883 740 081

2. Department of Experimental Physics of Complex Systems, The Henryk Niewodniczański Institute of Nuclear Physics of the Polish Academy of Sciences, 152 Radzikowskiego Str., 31-342 Krakow, Poland

3. Cyclotron Center Bronowice, Proton Radiotherapy Group, The Henryk Niewodniczański Institute of Nuclear Physics of the Polish Academy of Sciences, 152 Radzikowskiego Str., 31-342, Krakow, Poland

Abstract

Abstract Mass casualty scenarios of radiation exposure require high throughput biological dosimetry techniques for population triage, in order to rapidly identify individuals, who require clinical treatment. Accurate dose estimates can be made by biological dosimetry, to predict the acute radiation syndrome (ARS) within days after a radiation accident or a malicious act involving radiation. Timely information on dose is important for the medical management of acutely irradiated persons [1]. The aim of the study was to evaluate the usefulness of the micronuclei (MNi) scoring procedure in an experimental mode, where 500 binucleated cells were analyzed in different exposure dose ranges. Whole-body exposure was simulated in an in vitro experiment by irradiating whole blood collected from one healthy donor with 60 MeV protons and 250 keV X-rays, in the dose range of 0.3-4.0 Gy. For achieving meaningful results, sample scoring was performed by three independent persons, who followed guidelines described in detail by Fenech et al. [2, 3]. Compared results revealed no significant differences between scorers, which has important meaning in reducing the analysis time. Moreover, presented data based on 500 cells distribution, show that there are significant differences between MNi yields after 1.0 Gy exposure of blood for both protons and X-rays, implicating this experimental mode as appropriate for the distinction between high and low dose-exposed individuals, which allows early classification of exposed victims into clinically relevant subgroups.

Publisher

Walter de Gruyter GmbH

Subject

Waste Management and Disposal,Condensed Matter Physics,Safety, Risk, Reliability and Quality,Instrumentation,Nuclear Energy and Engineering,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3