Turbulent boundary layer heat transfer of CuO–water nanofluids on a continuously moving plate subject to convective boundary

Author:

Zhang Jiaojiao1ORCID,Liu Shengna1,Zheng Liancun1

Affiliation:

1. School of Mathematics and Physics , University of Science and Technology Beijing , Beijing 100083 , China

Abstract

Abstract The turbulent boundary layer (TBL) heat transfer of CuO–water nanofluids on a continuously moving plate subject to convective boundary are investigated. Five different shapes of nanoparticles are taken into account. Prandtl mixing length theory is adopted to divide the TBL into two parts, laminar sub-layer and turbulent region. The numerical solutions are obtained by bvp4c and accuracy is verified with previous results. It is found that the transfer of momentum and heat in the TBL is more obvious in laminar sub-layer than in turbulent region. The rise of velocity ratio parameter increases the velocity and temperature while decreases the local friction coefficient. The heat transfer increases significantly with the increase of velocity ratio parameter, Biot number, and nanoparticles volume fraction. For nanoparticles of different shapes, the heat transfer characteristics are Nu x (sphere) < Nu x (hexahedron) < Nu x (tetrahedron) < Nu x (column) < Nu x (lamina).

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Reference48 articles.

1. L. Prandtl, “Über flüssigkeitsbewegungen bei sehr kleiner Reibung,” in Proceedings of the Third International Mathematics Congress, Heidelberg, 1904, pp. 484–491.

2. H. Schlichting and K. Gersten, Boundary-Layer Theory, Berlin, Springer Science & Business Media, 2003.

3. F. M. White and I. Corfield, Viscous Fluid Flow, New York, McGraw-Hill, 2006.

4. G. Zou, Z. He, and X. Gu, Viscous Fluid Dynamics, Beijing, National Defense Industry Press, 2013.

5. M. Li, C. M. de Silva, D. Chung, et al.., “Experimental study of a turbulent boundary layer with a rough-to-smooth change in surface conditions at high Reynolds numbers,” J. Fluid Mech., vol. 923, p. A18, 2021. https://doi.org/10.1017/jfm.2021.577.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3