Sucrose Metabolism of Perennial Ryegrass in Relation to Cold Acclimation

Author:

Bhowmik Pankaj K.12,Tamura Ken-ichi3,Sanada Yasuhara3,Tase Kazuhiro3,Yamada Toshihiko1

Affiliation:

1. Field Science Center for Northern Biosphere, Hokkaido University, Sapporo 060-0811, Japan

2. Present address: Department of Agriculture, Food and Nutritional Science, Faculty of Agriculture, Forestry and Home Economics, University of Alberta, Edmonton, Alberta, Canada T6G 2P5

3. National Agricultural Research Center for Hokkaido Region, Sapporo 062-8555, Japan

Abstract

Abstract Sugar metabolism is one of the important factors involved in winter hardiness and since the discovery of sucrose biosynthesis, considerable advances have been made in understanding its regulation and crucial role. This investigation examined the changes in activities of sucrose metabolizing enzymes and sugar content during cold hardening of perennial ryegrass (Lolium perenne L.). Changes in acid invertase (AI), sucrose synthase (SS) and sucrose phosphate synthase (SPS) along with all the three soluble sugars glucose, fructose and sucrose were measured in leaves and stem base tissue during cold acclimation. Although fructans were the predominant carbohydrate the changes in glucose, fructose and sucrose were significant. All the three soluble sugars in both leaf and stem tissues started to decrease from the first day and continued up to day 7 and thereafter started to increase until day 28. AI in the soluble fraction showed a higher activity than that in the cell wall bound fraction. In both the leaf and stem bases soluble AI activity increased during the first week and after that it started to decrease gradually. On the other hand both the SS and SPS increased gradually throughout the acclimation period. Sucrose content was negatively correlated with AI and positively correlated with SS and SPS accounting well for the relation between the substrate and enzyme activity. These results suggest that AI, SS and SPS in ryegrass are regulated by cold acclimation and play an important role in sugar accumulation and acquisition of freezing tolerance

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3