Non-traditional Ziegler-Natta catalysis in α-olefin transformations: reaction mechanisms and product design

Author:

Nifant’ev Ilya12,Ivchenko Pavel2,Tavtorkin Alexander2,Vinogradov Alexey2,Vinogradov Alexander2

Affiliation:

1. Department of Chemistry, M.V. Lomonosov Moscow University, Moscow, Russia

2. A.V. Topchiev Institute of Petrochemical Synthesis RAS, Moscow, Russia

Abstract

AbstractThis paper describes our recent results in the field of zirconocene-catalyzed α-oltfin transformations, and focuses on questions regarding the reaction mechanism, rational design of zirconocene pre-catalysts, as well as prospective uses of α-olefin products. It has been determined that a wide range of α-olefin-based products, namely vinylidene dimers, oligomers and polymers, can be prepared via catalysis by zirconocene dichlorides, activated by a minimal (10–20 eq.) amount of MAO. We assumed that in the presence of minimal quantities of MAO, various types of zirconocene catalysts form different types of catalytic particles. In the case of bis-cyclopentadienyl complexes, the reactive center is formed under the influence of R2AlCl, which makes the chain termination via β-hydride elimination significantly easier, with α-olefin dimers being formed as the primary product. Bis-indenyl complexes and their heteroanalogues, form stable cationic catalytic particles and effectively catalyze the polymerization. Mono-indenyl and mono-substituted bis-cyclopentadienyl-ansa complexes catalyze α-olefin oligomerization. Effective catalysts of dimerization, oligomerization and polymerization of α-olefins in the presence of minimal MAO quantities are proposed. Prospects of using α-olefin dimers, oligomers and polymers in the synthesis of branched hydrocarbon functional derivatives (dimers), high quality, low viscosity motor oils (oligomers), and thickeners and absorbents (polymers) are examined.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3