Three-dimensional transient analysis of functionally graded cylindrical shells subjected to asymmetric dynamic pressure

Author:

Tahani Masoud,Setoodeh Ali Reza1,Selahi Ehsan2

Affiliation:

1. 3Faculty of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran

2. 1Faculty of Engineering, Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

AbstractThis paper presents an efficient and accurate numerical method based on the three-dimensional (3-D) elasticity theory for the transient analysis of functionally graded (FG) hollow cylindrical shells subjected to asymmetric dynamic pressure. The Fourier expansion is employed to describe the displacement components and dynamic pressure in the tangential direction. In addition, the layerwise theory is used to accurately account for the displacement components in the radial direction. The equations of motion and the related boundary conditions are derived using Hamilton’s principle. Then, differential quadrature method (DQM) is implemented to discretize the resulting equations in the both spatial and time domains. The convergence, accuracy and performance of the present method are established through the convergence study and comparison with available results in the literature. Also, the effects of different parameters such as thickness-to-inner radius ratio and boundary conditions on the dynamic behavior of hollow FG cylinders are investigated. The present method can accurately predict transient displacement and stress with less computational efforts.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3