Nonparametric C- and D-vine-based quantile regression

Author:

Tepegjozova Marija1,Zhou Jing2,Claeskens Gerda2,Czado Claudia3

Affiliation:

1. Department of Mathematics, Technische Universität München , Boltzmannstraße 3 , 85748 , Garching , Germany

2. ORStat and Leuven Statistics Research Centre , KU Leuven , Naamsestraat 69-box 3555 , Leuven , Belgium

3. Department of Mathematics and Munich Data Science Institute, Technische Universität München , Boltzmannstraße 3 , 85748 , Garching , Germany

Abstract

AbstractQuantile regression is a field with steadily growing importance in statistical modeling. It is a complementary method to linear regression, since computing a range of conditional quantile functions provides more accurate modeling of the stochastic relationship among variables, especially in the tails. We introduce a nonrestrictive and highly flexible nonparametric quantile regression approach based on C- and D-vine copulas. Vine copulas allow for separate modeling of marginal distributions and the dependence structure in the data and can be expressed through a graphical structure consisting of a sequence of linked trees. This way, we obtain a quantile regression model that overcomes typical issues of quantile regression such as quantile crossings or collinearity, the need for transformations and interactions of variables. Our approach incorporates a two-step ahead ordering of variables, by maximizing the conditional log-likelihood of the tree sequence, while taking into account the next two tree levels. We show that the nonparametric conditional quantile estimator is consistent. The performance of the proposed methods is evaluated in both low- and high-dimensional settings using simulated and real-world data. The results support the superior prediction ability of the proposed models.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Modeling and Simulation,Statistics and Probability

Reference67 articles.

1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. Petrov & F. Csáki (Eds.), Second international symposium on information theory (pp. 267–281). Budapest: Akadémiai Kiadó.

2. Athey, S., Tibshirani, J., & Wager, S. (2019). Generalized random forests. The Annals of Statistics, 47(2), 1148–1178.

3. Bartle, R. G., & Joichi, J. T. (1961). The preservation of convergence of measurable functions under composition. Proceedings of the American Mathematical Society, 12(1), 122–126.

4. Bartle, R. G., & Sherbert, D. R. (2000). Introduction to real analysis. New York: Wiley.

5. Bauer, A., & Czado, C. (2016). Pair-copula Bayesian networks. Journal of Computational and Graphical Statistics, 25(4), 1248–1271.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3