Catalyst free growth of single-crystalline bismuth nanorods by closed space sublimation technique

Author:

Usman Wajeeha1,Maqsood Asghari1

Affiliation:

1. Thermal Transport Laboratory, School of Chemical and Materials Engineering, National University of Science and Technology (NUST), Islamabad, Pakistan

Abstract

Abstract In the present study, bismuth (Bi) thin films having thickness of 335 nm have been deposited onto a glass substrate by closed space sublimation (CSS) technique. Besides this, spontaneous growth of Bi nanorods has also been investigated for the first time, without template and catalyst assistance in a substrate temperature range of 380 to 430 °C using CSS technique. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to investigate microstructure, morphology and roughness of the Bi nanorods. The diameter and length ranges of Bi nanorods were 80 to 400 nm and 3 to 5 μm, respectively. Moreover, they exhibited a rhombohedral structure with a dominant peak indexed at (012), (104), and (110). The mass percentage of Bi, determined by energy dispersive X-ray (EDX), was 99.93 %. The studies of electrical resistivity, Hall coefficient, magnetoresistivity, hole mobility and carrier concentration of Bi thin films were performed at 300 to 350 K and the electrical properties were found to be a function of temperature. The basic aim was to investigate the spectacular evolution of Bi nanostructures on as-deposited thin films and effects of thickness on their structural, electrical and dielectric properties. Detailed examination of SEM micrographs eliminated all other growth modes except self-catalytic tip growth by Vapor-Solid (VS) growth process which is believed to provide the driving force for spontaneous nanorod growth at high substrate temperature. Deposition of thinner Bi films provided a new possibility for fabrication of Bi nanorods of high quality.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3