Electron Energy Distribution Functions of Hydrogen: The Effect of Superelastic Vibrational Collisions and of the Dissociation Process

Author:

Capitelli M.1,Dilonardo M.1

Affiliation:

1. Centro di Studio per la Chimica dei Plasmi del C.N.R. — Dipartimento di Chimica dell'Università, Via Amendola 173, 70126 Bari — Italy

Abstract

Abstract Electron energy distribution functions (EDF) of molecular H2 have been calculated by numerically solving the Boltzmann equation including all the inelastic processes with the addition of superelastic vibrational collisions and of the hydrogen atoms coming from the dissociation process. The population densities of the vibrational levels have been obtained both by assuming a Boltz-mann population at a vibrational temperature different from the translational one and by solving a system of vibrational master equations coupled to the Boltzmann equation. The results, which have been compared with those corresponding to a vibrationally cold molecular gas, show that the inclusion of superelastic collisions and of the parent atoms affects the EDF tails without strongly modifying the EDF bulk. As a consequence the quantities affected by the EDF bulk, such as average and characteristic energies, drift velocity, 0-1 vibrational excitation rate are not too much affected by the inclusion of superelastic vibrational collisions and of parent atoms, while a strong influence is observed on the dissociation and ionization rate coefficients which depend on the EDF tail. Calculated dissociation rates, obtained by EDF's which take into account both the presence of vibrationally excited molecules and hydrogen atoms, are in satisfactory agreement with experimental results.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3