Affiliation:
1. School of Energy Science and Engineering , Harbin Institute of Technology , No. 92, Xidazhi Street, Nangang District, Harbin, Heilongjiang Province , Harbin 150001 , Heilongjiang , China
Abstract
Abstract
A designed method, multidisciplinary coupling computation and multiobjective optimization, has been established for the composite cooling structure of heavy gas turbine blade manufactured with a directionally solidified Ni-based superalloy. The method combines the one-dimensional fluid network gas-thermal coupling computation, three-dimensional flow field coupled with solid stress field, and anisotropic stress calculation based on finite deformation crystal slip. The temperature, flow field, Von-Mises stress and maximum resolved shear stress of the blade before and after optimization were analyzed. The results show that the optimized blade has lower maximum blade temperature, a more uniform temperature distribution, a lower flow resistance of the coolant channel at the leading edge than that of the original blade. The maximum Von-Mises stress of the optimized blade increases by 10.05 % more than the original blade. The maximum shear stress on the suction side and the pressure surface of the optimized blade are improved and slightly deteriorated compared with that of the original blade, respectively. The corresponding relationship of the maximum shear stress distribution with the local temperature gradient reveals further space for the improvement of the composite cooling structure. This paper has a particular guiding significance for the cooling structure design of the turbine blade.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献