Multiplicity of Entire Solutions For a Class of Almost Periodic Allen-Cahn Type Equations

Author:

Alessio Francesca1,Montecchiari Piero1

Affiliation:

1. Dipartimento di Scienze Matematiche, Università Politecnica delle Marche, via Brecce Bianche, I-60131 Ancona

Abstract

Abstract We consider a class of semilinear elliptic equations of the form −Δu(x,y) + a(εx)Wʹ(u(x,y)) = 0, (x,y) ∊ ℝ2 (0.1) where ε > 0, a : ℝ → ℝ is an almost periodic, positive function and W : ℝ → ℝ is modeled on the classical two well Ginzburg-Landau potential W(s) = (s2 - 1)2. We show via variational methods that if ε is sufficiently small and a is not constant then (0.1) admits infinitely many two dimensional entire solutions verifying the asymptotic conditions u(x, y) → ±1 as x → ±∞ uniformly with respect to y ∊ ℝ.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Reference12 articles.

1. On minimal laminations on the torus Poincare Anal Non - Line aire;Bargert;Inst,1989

2. Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi No;Ambrosio;Am Math Soc,2000

3. Stredulinsky Mixed states for an Allen - Cahn type equation II Partial Differ no;Rabinowitz;Calc,2004

4. On a conjecture of De Giorgi and some related problems;Ghoussoub;Math Ann,1998

5. Convergence problems for functionals and operators Meeting on Recent Methods in Nonlinear Analysis eds;De Giorgi;Proc Int,1978

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Brake orbit solutions for semilinear elliptic systems with asymmetric double well potential;Journal of Fixed Point Theory and Applications;2016-11-12

2. Unbounded solutions for a periodic phase transition model;Journal of Differential Equations;2016-01

3. Multiplicity of layered solutions for Allen–Cahn systems with symmetric double well potential;Journal of Differential Equations;2014-12

4. Solutions of higher topological type for an Allen–Cahn model equation;Journal of Fixed Point Theory and Applications;2014-06

5. Saddle solutions for bistable symmetric semilinear elliptic equations;Nonlinear Differential Equations and Applications NoDEA;2012-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3