Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

Author:

Perras Frédéric A.1

Affiliation:

1. 1Ames Laboratory, Iowa State University, 211 Spedding Hall, Ames, IA 50011-3020, USA

Abstract

AbstractNuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities. Two-dimensional J-resolved-type experiments are then presented for the measurement of dipolar and J coupling, between spin-1/2 and quadrupolar nuclei as well as in pairs of quadrupolar nuclei. Select examples utilizing these techniques for the extraction of structural information are given. Techniques are then described that enable the fine refinement of crystalline structures using solely the electric field gradient tensor, measured using NMR, as a constraint. These approaches enable the solution of crystal structures, from polycrystalline compounds, that are of comparable quality to those solved using single-crystal diffraction.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nuclear Magnetic Resonance (NMR): Modern Methods;Springer Handbook of Advanced Catalyst Characterization;2023

2. Recent advances in solid-state nuclear magnetic resonance spectroscopy of exotic nuclei;Progress in Nuclear Magnetic Resonance Spectroscopy;2018-12

3. Solid-State NMR of Oxide-Based Materials;Modern Magnetic Resonance;2018

4. Recent Progress in Homonuclear Correlation Spectroscopy of Quadrupolar Nuclei;Modern Magnetic Resonance;2018

5. Modern ssNMR for heterogeneous catalysis;Catalysis Today;2017-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3