Elevated Temperature Treatment Induced Alteration in Thylakoid Membrane Organization and Energy Distribution between the Two Photosystems in Pisum sativum

Author:

Mohanty Prasanna12,Vani Bagawatula1,S. Prakash Jogadhenu S.1

Affiliation:

1. School of Life Sciences, Jawaharlal Nehru University, New Delhi -110 067, India

2. Regional Plant Resource Center (RPRC), Bhubaneswar 751015, Orissa, India. Fax: 00-91-6 74-550274. E-mail:

Abstract

Two-week-old pea (Pisum sativum var. Arkal) plants were subjected to elevated temperature (38 °C/42 °C) in dark for 14−15 h. The effect of heat treatment on light- induced phosphorylation of LHCII and LHCII migration in the thylakoid membranes were investigated. The heat treatment did cause a substantial (more than two fold) increase in the extent of LHCII phosphorylation as compared to the control. Upon separation of appressed and nonappressed thylakoid fractions by digitonin treatment, the heat-treated samples showed a decrease in LHCII-related polypeptides from the grana stack (appressed region) over the control. Further, a small increase in the intensity of these (LHCII-related) bands was detected in stromal thylakoid fraction (non-appressed membranes). This suggests an enhanced extent of migration of phosphorylated LHCII from appressed to non-appressed regions due to in vivo heat treatment of pea plants. We also isolated the LHCII from control and heat treated (42 °C) pea seedlings. Analysis of CD spectra revealed a 5D6 nm blue shift in the 638 nm negative peak in heat treated samples suggesting alteration in the organization of Chl b in the LHCII macro-aggregates. These results suggest that in vivo heat stress not only alters the extent of migration of LHCII to stromal region, but also affects the light harvesting mechanism by LHCII associated with the grana region.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3