Abstract
Abstract
We observe a connection between the existence of square-integrable representations of a locally compact group G and the existence of nonzero translation invariant operators from its Fourier–Stieltjes algebra
{B(G)}
into
{L^{2}(G)}
or, equivalently, from
{L^{2}(G)}
into its enveloping von Neumann algebra
{C^{*}(G)^{**}}
.
Reference32 articles.
1. Compact convolution operators between Lp(G)L_{p}(G)-spaces;Colloq. Math.,1978
2. Résumé de la théorie métrique des produits tensoriels topologiques;Bol. Soc. Mat. São Paulo,1956
3. Les fonctions de type positif et la théorie des groupes;Trans. Amer. Math. Soc.,1948
4. Square-integrable representations of Hilbert algebras;J. Funct. Anal.,1969
5. Compact convolution operators between Lp(G)L_{p}(G)-spaces;Colloq. Math.,1978