Approximation of Ausferrite Content in the Compacted Graphite Iron with the Use of Combined Techniques of Data Mining

Author:

Regulski K.,Wilk-Kołodziejczyk D.,Kacprzyk B.,Gumienny G.,Rojek G.,Mrzygłód B.

Abstract

AbstractThis article presents the methodology for exploratory analysis of data from microstructural studies of compacted graphite iron to gain knowledge about the factors favouring the formation of ausferrite. The studies led to the development of rules to evaluate the content of ausferrite based on the chemical composition. Data mining methods have been used to generate regression models such as boosted trees, random forest, and piecewise regression models. The development of a stepwise regression modelling process on the iteratively limited sets enabled, on the one hand, the improvement of forecasting precision and, on the other, acquisition of deeper knowledge about the ausferrite formation. Repeated examination of the significance of the effect of various factors in different regression models has allowed identification of the most important variables influencing the ausferrite content in different ranges of the parameters variability.

Publisher

Walter de Gruyter GmbH

Subject

Metals and Alloys,Industrial and Manufacturing Engineering

Reference30 articles.

1. study on the structure and mechanical properties of compacted cast iron with pearlitic - ferritic matrix of Foundry;Guzik;Archives Engineering,2009

2. s Desks Surface Diagnostics with Usage of Robotic System of and;David;Archives Metallurgy Materials,2013

3. de Cos Bankruptcy forecasting : a hybrid approach using fuzzy c - means clustering and multivariate adaptive regression splines with;De Andrés;Expert Systems Applications,2011

4. The logic of plausible reasoning in the diagnosis of castings defects of and;Kluska;Archives Metallurgy Materials,2007

5. Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplantation Biomed Control http dx doi org;Shaikhina;Signal Process,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3