Machinability investigation of medium-density fibreboard

Author:

Lin Richard J.T.,van Houts Jeroen,Bhattacharyya Debes

Abstract

Abstract For many applications, the perceived quality of a medium-density fibreboard (MDF) is influenced by the appearance of its machined surface. The behaviour of MDF has been studied by passing a cutting tool through it at a relatively low speed. A digital camera was used that travels synchronously with the tool and the deformation occurring in front of the tool tip was recorded. The magnification of approximately 30× also allows the individual fibres or bundles to be clearly observed. Photographic images have also been taken of the same machining process at a much higher speed, producing similar results and thus establishing the slow-speed study as a viable option. The machining of different MDF samples has been recorded using a cutting speed of 1.6 mm s−1 and varying depths of cut (0.5, 0.75 and 1.0 mm). The video recordings of various panels permit the identification of their peculiar machining characteristics. Unrefined particles play a major role during machining. The trends of results have also been confirmed by scanning electron micrographs. The board densities were found to have a major influence on the machinability characteristics of the boards.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Reference16 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3