Ideal pH for the adsorption of metal ions Cr6+, Ni2+, Pb2+ in aqueous solution with different adsorbent materials

Author:

Cruz-Lopes Luísa P.1,Macena Morgana1,Esteves Bruno1,Guiné Raquel P. F.2

Affiliation:

1. CERNAS-IPV Research Centre, ESTGV - Polytecnic Institute of Viseu , Viseu , Portugal

2. CERNAS-IPV Research Centre, ESAV - Polytecnic Institute of Viseu , Viseu , Portugal

Abstract

Abstract Industrialization increases the number of heavy metals released into the environment. Lead (Pb2+), nickel (Ni2+) and chromium (Cr6+) are among these toxic metals and cause irreversible effects on ecosystems and human health due to their bio-accumulative potential. The decontamination through adsorption processes using lignocellulosic wastes from agricultural and/or forestry processes is a viable solution. Hence, this work aimed at studying the effect of pH on the biosorption of the metal ions using four different by-product materials: walnut shell, chestnut shell, pinewood and burnt pinewood. These experiments were conducted with solutions of the three heavy metals in which the adsorbents were immersed to measure the rate of adsorption. A range of pH values from 3.0 to 7.5 was used in the experiments, and the concentrations were determined by atomic absorption. The results showed different behaviour of the biosorbent materials when applied to the different metals. The lead adsorption had an ideal pH in the range of 5.5–7.5 when the walnut shell was used as an adsorbent, corresponding to values of adsorption greater than 90%, but for the other materials, maximum adsorption occurred for a pH of 7.5. For the adsorption of chromium, the pH was very heterogeneous with all adsorbents, with optimal values of pH varying from 3.0 (for chestnut shell) to 6.5 (for walnut shell and wood). For nickel, the best pH range was around pH 5, with different values according to the lignocellulosic material used. These results indicate that the tested biosorbents have the potential to decontaminate wastewater in variable extensions and that by controlling the pH of the solution; a more efficient removal of the heavy metals can be achieved.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3