Treatment of carbamazepine and other structurally-related pharmaceuticals in water and wastewater by nanoporous adsorbents and photocatalysts: a critical review

Author:

Farghal Hebatullah H.1,Nebsen Marianne2,Blaney Lee3,El-Sayed Mayyada M. H.1ORCID

Affiliation:

1. Department of Chemistry, School of Sciences and Engineering , 11341 The American University in Cairo , AUC Avenue, P.O. Box 74 , New Cairo , 11835 , Cairo , Egypt

2. Analytical Chemistry Department, Faculty of Pharmacy , 63526 Cairo University , Kasr-El Aini Street, 11562 Cairo , Egypt

3. Department of Chemical, Biochemical, and Environmental Engineering , University of Maryland Baltimore County , 1000 Hilltop Circle , Baltimore , MD 21250 , USA

Abstract

Abstract Carbamazepine (CBZ) is a contaminant of emerging concern that is persistent in water and wastewater. At low concentrations, prolonged exposure to CBZ-containing water causes detrimental health effects to humans and may also have negative impacts on the environment. Here we critically review new treatment approaches to decrease CBZ concentrations in water and wastewater. First, we summarize the transformation pathways of CBZ in the aquatic environment and identify the corresponding products. Then, we describe the removal of CBZ and structurally-related pharmaceuticals by phototransformation, biotransformation, and adsorption processes, with an emphasis on the application of naturally- and biologically-derived nanoporous adsorbents, such as agricultural wastes, natural polymers, activated carbon, metal organic frameworks, silicas, and molecularly imprinted polymers. Biologically-derived activated carbons exhibited the highest adsorption capacities for CBZ, with adsorption predominantly occurring through hydrophobic and π–π interactions. CBZ was also effectively treated using titanium dioxide and other inorganic photocatalysts. This review not only provides a critical synthesis of state-of-the-art adsorption and degradation processes for CBZ and structurally-related pharmaceuticals, but also proposes knowledge gaps and future research directions.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3