Motion detection: cells, circuits and algorithms

Author:

Ramos-Traslosheros Giordano,Henning Miriam,Silies Marion

Abstract

Abstract Many animals use visual motion cues to inform different behaviors. The basis for motion detection is the comparison of light signals over space and time. How a nervous system performs such spatiotemporal correlations has long been considered a paradigmatic neural computation. Here, we will first describe classical models of motion detection and introduce core motion detecting circuits in Drosophila. Direct measurements of the response properties of the first direction-selective cells in the Drosophila visual system have revealed new insights about the implementation of motion detection algorithms. Recent data suggest a combination of two mechanisms, a nonlinear enhancement of signals moving into the preferred direction, as well as a suppression of signals moving into the opposite direction. These findings as well as a functional analysis of the circuit components have shown that the microcircuits that process elementary motion are more complex than anticipated. Building on this, we have the opportunity to understand detailed properties of elementary, yet intricate microcircuits.

Publisher

Walter de Gruyter GmbH

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3