A CP/MAS 13C NMR investigation of cellulose ultrastructure in traditional Chinese handmade papers

Author:

Liu Peng12ORCID,Jin Chao2,Zhang Kai1,Xue Yu1,Gao Boxu3,Jia Yingshuai3,Yan Yueer2,Zhang Hongbin2ORCID,Wang Sinong2,Tang Yi3

Affiliation:

1. State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences , Jinan 250353 , China

2. Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University , Shanghai 200433 , China

3. Department of Chemistry , Fudan University , Shanghai 200433 , China

Abstract

Abstract Cellulose-based handmade paper records a substantial amount of historical data and promotes human civilization. Due to the complexity of its structure and external factors, the deterioration of paper in the restoration of ancient books cannot be completely stopped. Nonetheless, the lack of microstructure analysis of handmade paper limits the understanding of its aging mechanism and storage life-span. Herein, CP/MAS 13C NMR method was used to estimate the cellulose types, crystallinity, average lateral fibril dimension (LFD), and the average lateral fibril aggregate dimension (LFAD), relying on integrated spectral fitting from C1, C4, and C6 regions, respectively. Consequently, cellulose I β crystals were predominant in all handmade paper samples. Based on the results of C4 and C6 regions by peak separation method, bast paper (Kaihua paper and Yingchun paper) demonstrated a higher crystallinity than bamboo paper (Yuanshu paper). Additional analysis of the C4 data revealed that bast papers exhibit larger cellulose microfibrils, and their LFDs and LFADs were greater than bamboo papers. Moreover, external stress of Wiley milling reduced the LFAD from the original 9 elementary fibrils to 4 elementary fibrils with unchanged LFDs.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3