High level quantile approximations of sums of risks

Author:

Cuberos A.1,Masiello E.2,Maume-Deschamps V.2

Affiliation:

1. 1Université de Lyon, Université Lyon 1, Laboratoire SAF EA 2429, SCOR SE

2. 2Université de Lyon, Université Lyon 1, Institut Camille Jordan ICJ UMR 5208 CNRS

Abstract

AbstractThe approximation of a high level quantile or of the expectation over a high quantile (Value at Risk (VaR) or Tail Value at Risk (TVaR) in risk management) is crucial for the insurance industry.We propose a new method to estimate high level quantiles of sums of risks. It is based on the estimation of the ratio between the VaR (or TVaR) of the sum and the VaR (or TVaR) of the maximum of the risks. We show that using the distribution of the maximum to approximate the VaR is much better than using the marginal. Our method seems to work well in high dimension (100 and higher) and gives good results when approximating the VaR or TVaR in high levels on strongly dependent risks where at least one of the risks is heavy tailed.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Modeling and Simulation,Statistics and Probability

Reference16 articles.

1. Value - at - Risk boundswith variance constraints Available at http : / / dx doi org;Bernard;Risk Insur,2015

2. A note on the computation of sharp numerical bounds for the distribution of the sum , product or ratio of dependent risks;Cossette;Multivariate Anal,2014

3. Asymptotic expansions of convolutions of regularly varying distributions;Barbe;Aust Math Soc,2005

4. Riskmeasures andmultivariate extensions of Breiman s theorem;Fougères;Appl Probab,2012

5. Estimation of parameters and large quantiles based on the k largest observations;Weissman;Amer Statist Assoc,1978

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3