Author:
Akoachere Monique,Iozef Rimma,Rahlfs Stefan,Deponte Marcel,Mannervik Bengt,Creighton Donald J.,Schirmer Heiner,Becker Katja
Abstract
AbstractThe glyoxalase system consisting of glyoxalase I (GloI) and glyoxalase II (GloII) constitutes a glutathione-dependent intracellular pathway converting toxic 2-oxoaldehydes, such as methylglyoxal, to the corresponding 2-hydroxyacids. Here we describe a complete glyoxalase system in the malarial parasitePlasmodium falciparum. The biochemical, kinetic and structural properties of cytosolic GloI (cGloI) and two GloIIs (cytosolic GloII named cGloII, and tGloII preceded by a targeting sequence) were directly compared with the respective isofunctional host enzymes. cGloI and cGloII exhibit lowerKmvalues and higher catalytic efficiencies (kcat/Km) than the human counterparts, pointing to the importance of the system in malarial parasites. A Tyr185Phe mutant of cGloII shows a 2.5-fold increase inKm, proving the contribution of Tyr185 to substrate binding. Molecular models suggest very similar active sites/metal binding sites of parasite and host cell enzymes. However, a fourth protein, which has highest similarities to GloI, was found to be unique for malarial parasites; it is likely to act in the apicoplast, and has as yet undefined substrate specificity. Various S-(N-hydroxy-N-arylcarbamoyl)glutathiones tested asP. falciparumGlo inhibitors were active in the lower nanomolar range. The Glo system ofPlasmodiumwill be further evaluated as a target for the development of antimalarial drugs.
Subject
Clinical Biochemistry,Molecular Biology,Biochemistry
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献