Bimetallic nanoparticles preparation from metallic organic frameworks, characterization and its applications in reclamation of textile effluents

Author:

Alam Sultan1,Rahman Sher1,Rahman Najeeb ur1,Ilyas Muhammad1,Ullah Shakir1,Zahoor Muhammad2,Umar Muhammad Naveed3,Ullah Riaz4,Ali Essam A.5

Affiliation:

1. Department of Chemistry , University of Malakand , Chakdara , Dir Lower, KPK, 18800 , Pakistan

2. Department of Biochemistry , University of Malakand , Chakdara , Dir Lower, KPK, 18800 , Pakistan

3. Department of Chemistry , University of Liverpool , Liverpool , UK

4. Department of Pharmacognosy, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia

5. Department of Pharmaceutical Chemistry , College of Pharmacy, King Saud University , Riyadh , Saudi Arabia

Abstract

Abstract Herein bimetallic nanoparticles of Co–Mn were prepared using metal-organic framework (CoMn2 (C2O4)3·6H2O) as a starting material. Initially, the bimetallic organic frame work was prepared which was then subjected to pyrolysis to get the desired product. Techniques like scanning electron microscopy (SEM), Energy-Dispersive X-ray spectroscopy (EDX), X-ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR) were used to characterize the bimetallic nanoparticles. These analyses revealed that the Co–Mn nanoparticles consisted of finely distributed Mn and Co, along with O in the composites. XRD data confirmed the presence of nano-scale ranges and alloy formation between Co–Mn. The nanoparticles were employed as adsorbent for methyl violet adsorption, with optimized conditions found to be pH 9, temperature 333 K, adsorbents dosage of 0.01 g, and 30 min of contact time. The pseudo-second-order kinetic model best described the adsorption kinetics data whereas Langmuir isotherm exhibited the closest fit, with a maximum adsorption capacity of 625 mg/g at 333 K. Thermodynamic parameters indicated endothermic processes, with ΔH° = 15.155 kJ mol−1, and the process to be spontaneous with negative ΔG° values −0.303, −0.831, and −1.886 (kJ mol−1) at 293 K, 313 K, and 333 K, respectively. The ΔS° value of 52.76 J mol−1K−1 suggested increased disorder at the solid-solution interface during adsorption. The adsorbent could be effectively used in reclamation of dyes loaded water as alternative of activated carbon.

Funder

King Saud University

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3