Microwave synthesis of magnesium phosphate-rGO as an effective electrode for supercapacitor application

Author:

Eliyas S. Mohammed1,Yuvakkumar Rathinam1ORCID,Ravi Ganesan12,Metha S. Arun3

Affiliation:

1. Department of Physics , Alagappa University , Karaikudi , 630 003 , Tamil Nadu , India

2. Department of Physics , Chandigarh University , Mohali 140 413 , Punjab , India

3. Department of Electronics and Communication Engineering , Koneru Lakshmaiah Education Foundation , Guntur , Andhra Pradesh 522 302 , India

Abstract

Abstract Transition metal phosphate based materials is being used for energy storage because of P–O covalent bond which facilitates more storage compared to other transition metals and this covalent bond enhanced the electrochemical performance for supercapacitor applications. Pure magnesium phosphate (Mg3(PO4)2) were synthesized via microwave synthesis as the composite varies with rGO (MgPO-XrGO) X=25,50,75,100mg. The prepared composite materials were examined employing XRD, Raman, FT-IR, SEM and XPS studies. Electrochemical studies (CV, EIS, GCD) of three electrode system for the prepared electrodes were performed using Biologic SP-150 with 2M (H2SO4) as electrolyte. From the XRD results, triclinic structured MgPO was confirmed (JCPDS card #35–0329) and rGO has enhanced the crystallinity of MgPO composite. From Raman analyses, the well graphitization nature of rGO in composite MgPO was identified and from XPS analysis chemical composition of the elements was analyzed. The FT-IR fundamental modes of vibrations of PO 4 3 ${\text{PO}}_{4}^{3-}$ (γ 1,γ 3,γ 4) were obtained. The electrochemical analysis of the prepared material such as pure and composite materials showed better performance. The high specific capacitance was obtained for MgPO-50rGO because MgPO has high coordination with rGO. As Mg2+ oxidation state has high chemical reactivity compared to other earth metals and other advantage is P–O covalent bond that enhanced the performance of the electrode. By facilitating these advantages, rGO is included as composite to develop the electrode to favor the practical applications. By using the optimum level rGO composite with MgPO4-50rGO a better new candidate was successfully developed for supercapacitor applications. The fabricated MgPO-50rGO//Activate carbon full cell set up exhibited the specific capacitance 61 Fg−1 at 1 Ag−1, 21.7 Wh kg−1 energy density and 790.0 W kg−1 power densities and explored outstanding capacitive retention in 2 electrode full cell setup cyclic stability of 99.1 % over the 5000 cycles.

Funder

UGC-SAP, DST-FIST, DST-PURSE and RUSA grants

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3