Design of novel UPFC based damping controller for solar PV integrated power system using arithmetic optimization algorithm

Author:

Bohidar Sankalpa1,Mallick Ranjan Kumar2ORCID,Nayak Pravati1,Mishra Sairam1ORCID,Nahak Narayan1,Panda Gayadhar3,Gouda Pramod Kumar4

Affiliation:

1. Department of Electrical Enginerering , SOA University , Bhubaneswar , Odisha 751030 , India

2. Department of Electrical and Electronics Engineering , SOA University , Bhubaneswar , Odisha 751030 , India

3. Department of Electrical Engineering , NIT Meghalaya , Shillong 793003 , India

4. Electrical and Electronics Engineering , 470169 Aditya Institute of Technology and Management , Tekkal , Andhra Pradesh 532201 , India

Abstract

Abstract Integrating renewable energy sources like solar power into traditional power systems poses challenges. One such challenge is the effect of renewable power plants, which use power electronics, on the grid’s stability. Specifically, these plants can impact small-signal stability by either damping or exacerbating low-frequency oscillations. This paper introduces a novel Unified Power Flow Controller (UPFC) based damping controller specifically designed for Solar Photovoltaic (PV) integrated power systems. It employs an Arithmetic Optimization Algorithm (AOA) to optimize the UPFC damping controller parameters and mitigate low-frequency oscillations in the power system. The objective function minimizes the Integral Time Absolute Error (ITAE) of speed deviations under varying loading conditions. The proposed technique is utilized simultaneously to control the modulation index of series and phase angle of shunt converters of UPFC. The MATLAB/simulation results obtained effectively from the proposed technique which is actualized and identify both detrimental and beneficial impacts of increased PV penetration for small signal stability performance. The study reveals both the small-signal stability of the system and its response to large disturbances that alter the active power balance and frequency stability. The results of the analysis demonstrated with single and multimachine environment by comparing with the other optimizations like PSO, DE, DE-PSO and GWO, the proposed one is effective for damping out the oscillations. The effectiveness of the proposed damping controller is further confirmed through real-time validation using the OPAL-RT setup.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3