A model for calculating losses in transformer related to orders and harmonic amplitude under analysis of joule effect, eddy current and hysteresis

Author:

Santos Gabriel1,Laurindo Bruno M.1,Fortes Marcio Z.1,França Bruno W.1,Martins Flavio G.R.1

Affiliation:

1. PPGEET/TEE - Universidade Federal Fluminense, Niteroi, Rio de Janeiro, Brazil

Abstract

AbstractThe electrical transformer is one of the most used equipment in electrical power systems. The non-linear electrical loads are increasing, mainly in the electrical distribution system, and the electrical power transformer is inserted in this scenario, supplying these loads. Consequently, the increasing non-linear loads affect the electrical transformers and their factors directly, like in the dependency between temperature and harmonic increase. Therefore, to study the influence of harmonics in the transformer’s temperature, one should understand how it will behave with these changes in the electrical power system. For this reason, in this article, numeric simulations and tests were performed to predict the transformer temperature behavior. The proposal is a numeric technique for coupling two equations, thermal and electromagnetic, of an electrical transformer, considering heat sources regarding joule, eddy current, and hysteresis effect. To evaluate the numeric simulation and understanding the electrical transformer behavior in real-life, tests with specific harmonic orders (3rd, 5th, and 7th) and their combinations and a test with less than 10% total harmonic distortion, according to IEEE 519 standard were performed. It is verified that the electrical transformer temperature rises with the increase in harmonic amplitude and its orders. Results show that the industry must be aware of the effects of the increasing non-linear loads when designing the next generation of transformers concerning their durability and lifetime.

Publisher

Walter de Gruyter GmbH

Subject

Energy Engineering and Power Technology

Reference50 articles.

1. Derating of power distribution transformers serving nonlinear industrial loads;2017 Int. Conf. Optim. Electr. Electron. Equip. OPTIM 2017 Intl Aegean Conf. Electr. Mach. Power Electron. ACEMP,2017

2. Power electronics – a technology review;Proc IEEE,1992

3. Review of harmonic analysis, modeling and mitigation techniques;Renew Sustain Energy Rev,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3