Randomization Inference in the Regression Discontinuity Design: An Application to Party Advantages in the U.S. Senate

Author:

Cattaneo Matias D.1,Frandsen Brigham R.2,Titiunik Rocío3

Affiliation:

1. 1Department of Economics, University of Michigan, Ann Arbor, MI, USA

2. 2Department of Economics, Brigham Young University, Provo, UT, USA

3. 3Department of Political Science, University of Michigan, 5700 Haven Hall, 505 South State St, Ann Arbor, MI, USA

Abstract

AbstractIn the Regression Discontinuity (RD) design, units are assigned a treatment based on whether their value of an observed covariate is above or below a fixed cutoff. Under the assumption that the distribution of potential confounders changes continuously around the cutoff, the discontinuous jump in the probability of treatment assignment can be used to identify the treatment effect. Although a recent strand of the RD literature advocates interpreting this design as a local randomized experiment, the standard approach to estimation and inference is based solely on continuity assumptions that do not justify this interpretation. In this article, we provide precise conditions in a randomization inference context under which this interpretation is directly justified and develop exact finite-sample inference procedures based on them. Our randomization inference framework is motivated by the observation that only a few observations might be available close enough to the threshold where local randomization is plausible, and hence standard large-sample procedures may be suspect. Our proposed methodology is intended as a complement and a robustness check to standard RD inference approaches. We illustrate our framework with a study of two measures of party-level advantage in U.S. Senate elections, where the number of close races is small and our framework is well suited for the empirical analysis.

Publisher

Walter de Gruyter GmbH

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 211 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3