Affiliation:
1. School of Mathematics and Computer Science , 521180 Indian Institute of Technology Goa , Ponda , Goa-403401 , India
Abstract
Abstract
In this paper, we propose and analyze a discontinuous Galerkin finite element method for solving the transient Boussinesq incompressible heat conducting fluid flow equations.
This method utilizes an upwind approach to handle the nonlinear convective terms effectively.
We discuss new a priori bounds for the semidiscrete discontinuous Galerkin approximations.
Furthermore, we establish optimal a priori error estimates for the semidiscrete discontinuous Galerkin velocity approximation in
L
2
\mathbf{L}^{2}
and energy norms, the temperature approximation in
L
2
L^{2}
and energy norms and pressure approximation in
L
2
L^{2}
-norm for
t
>
0
t>0
.
Additionally, under the smallness assumption on the data, we prove uniform in time error estimates.
We also consider a backward Euler scheme for full discretization and derive fully discrete error estimates.
Finally, we provide numerical examples to support the theoretical conclusions.
Funder
Science and Engineering Research Board
Council of Scientific and Industrial Research, India
Reference36 articles.
1. R. A. Adams,
Sobolev Spaces,
Pure Appl. Math. 65,
Academic Press, New York, 1975.
2. D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini,
Unified analysis of discontinuous Galerkin methods for elliptic problems,
SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779.
3. S. Bajpai and D. K. Swain,
A priori error estimates of a three-step two-level finite element Galerkin method for a 2D-Boussinesq system of equations,
Comput. Math. Appl. 146 (2023), 137–164.
4. H. Bénard,
Les tourbillons cellulaires dans une nappe liquide,
Rev. Gen. Sci. Pure Appl. 11 (1900), 1261–1271, 1309–1328.
5. H. Bénard,
Les tourbillons cellularies dans une nappe liquide transportant de la chaleur par convection en régime permanent,
Ann. Chim. Phys. 23 (1901), 62–144.