Author:
Vivekanandan M.,Anantharaman N.,Premalatha M.
Abstract
Abstract
In a circulating fluidized bed (CFB), the loop seal is an important component which recirculates the solids captured by the cyclone to the bottom of the riser and avoids the direct flow of gas from high-pressure riser to the low-pressure cyclone. Most of the CFBC systems employ a Non-Mechanical valve, and its function has been investigated by many researchers. In this work, the flow of solid particle within the loop seal has been studied elaborately, and various design and operating parameters of the loop seal were analyzed in detail using Computational Fluid Dynamics (CFD). The CFD study has handled a loop-seal of dimension 110 mm × 430 mm × 400 mm high. This analysis has been done with a 200 µm sand particle and it is checked for its flow ability through various sizes and by altering the L/H ratio for three solid mass fluxes and for three L/H ratios of loop seal. The rate of solid mass flux depends on the length of the horizontal passage connecting the recycle cycle compartment of the loop seal with the supply chamber and hence the solid flow rate and the pressure difference per unit length are directly proportional to the length of the chamber or passage. Hence, L/H ratio is taken as a driving variable for the optimum performance of loop seal. The CFD analysis results reveal that the aeration of the solid to be used within the loop-seal should be higher than the Minimum Fluidization velocity. Also, keeping the length of the horizontal passage constant and varying the height of the passage will reduce the pressure drop. The pressure drop across the horizontal passage decreases up to a certain L/H ratio after which it increases. By comparing the three L/H ratios, L/H ratio of 2.62 is having a lesser pressure drop for the three mass fluxes. L/H ratio of 2.62 is having a good fluidization phenomenon and also the flow from the recycle chamber is more in comparison to the other L/H ratios. Experimental data from the literature is in good agreement with the CFD results.
Subject
Modelling and Simulation,General Chemical Engineering