Parametric investigation and optimization for CO2 laser cladding of AlFeCoCrNiCu powder on AISI 316

Author:

Menghani Jyoti1,Vyas Akash1,More Satish2,Paul Christ3,Patnaik Amar4

Affiliation:

1. Mechanical Engineering Department, SVNIT , Surat , Gujarat , India

2. V R Siddhartha Engineering College , Vijayawada , Andhra Pradesh , India

3. Laser Additive Manufacturing Laboratory, RRCAT , Indore , Madhya Pradesh , India

4. Mechanical Engineering Department, MNIT , Jaipur , Rajasthan , India

Abstract

Abstract The purpose of the current investigation is to analyze the effect of the operating parameters of laser-assisted cladding process on clad height, clad depth, clad width and the percentage dilution in a cladding of AlFeCuCrCoNi high-entropy powder on SS-316 through CO2 laser and to optimize the cladding process parameters for optimum dilution. The experiments were designed by the full factorial method and analyzed by ANOVA. The analysis results indicate that dilution is most influenced by scanning speed followed by the powder feed rate. The outcomes of the single clad profile in terms of dilution, microhardness, composition and the microstructures produced in various cladding conditions are investigated briefly, and through which the optimum set of laser cladding operating parameters for maximum hardness of the clad material is determined. The optimum cladding conditions in the experimental range were obtained at 4 g/min powder feeding rate, 500 mm/min laser scanning speed and 1.1 kW laser beam power through multi-response optimization. Furthermore, the multi-track coating with 60% overlapping ratio was deposited using optimized parameters. The wear behavior of multi-track coating was determined using pin on disk wear apparatus with applied load of 20 N, sliding speed of 300 RPM and test duration of 15 min. The pin on disk wear test results indicates that the friction coefficient of SS-316 is larger than that of high-entropy alloy cladded SS-316. The wear resistivity of SS-316 improved by 40.35% after laser-assisted high-entropy alloy coating, which confirms that the laser cladding layer plays an essential role in enhancing the wear resistance capability of austenite steel.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3