Towards the enhancement of transdermal drug delivery through thermocavitation

Author:

Padilla-Martinez Juan P.,Banks Darren,Ramirez-San-Juan Julio C.,Ramos-Garcia Ruben,Sun Feng,Aguilar Guillermo

Abstract

AbstractAlthough for some highly lipophillic drugs the principal barrier to permeate the human skin may reside in the essentially viable epidermal membrane, for most molecules, the stratum corneum (SC) is the rate-limiting barrier to drug delivery. Today, several techniques have been developed to enhance transdermal drug delivery (TDD) by increasing the effective permeability of the SC (e.g., iontophoresis, electroporation, micro-needle, ultrasound, radio frequency and laser radiation). The goal of this study is to investigate the extent to which thermocavitation may be used as a novel alternative method to selectively pierce the SC and thus enhance TDD. Thermocavitation for this purpose is generated by a continuous wave (CW), low power laser beam focused on a highly-absorbing solution topically applied on the skin surface. The absorbed light creates a superheated volume in a tightly localized region followed by explosive phase transition and the formation of vapor-gas bubbles, which expand and later collapse very rapidly emitting intense acoustic shockwaves that disrupt the surface underneath.Thermocavitation bubbles were induced close to the surface of skin models (agar gels) andThe damage observed on agar gel and porcine skin appears to be congruent with the relationship between laser power, focal point, cavitation frequency and extent of damage observed in previous studies. In particular, the greatest damage induced to the agar phantoms was produced with the lowest laser power (∼153 mW) and thinnest solution layer (∼100 μm) used. Similar laser and solution layer settings led to porcine skin damage of ∼80–100 μm in diameter, which was sufficiently large to break the SC and allow the penetration of 4 kDa, FITC-dextran to depths of ∼40–60 μm.This novel approach to achieve cavitation is attractive and seems promising because it can be generated with inexpensive, low power CW lasers, capable of selectively disrupting the SC and allowing the penetration of large, hydrophilic drugs topically applied to the skin.

Publisher

Walter de Gruyter GmbH

Subject

Dermatology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3