Vortex structure control based bleed in axial compressor cascade with tip clearance using large eddy simulation

Author:

Gong Yun1,Chen Shaowen1,Zeng Cong1ORCID

Affiliation:

1. School of Energy Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China

Abstract

Abstract As an essential component, the bleed system plays a critical role in supplying turbine cooling air, guaranteeing stage matching, pressurizing the cabin, and de-icing at the wing and engine inlet. However, the extraction of the bleeding air from the compressor causes the engine efficiency degradation and thrust deficit. Therefore, flow control based on bleed is conducted to compensate the bleed induced disadvantages. The influence of the circumferential bleeding slot location on the tip leakage vortex and passage vortex controlling in a compressor cascade with the tip clearance is numerically studied using large eddy simulation. Three bleed configurations and the smooth casing configuration are investigated. 17.11% loss reduction is obtained through bleeding at 10% c x upstream of the blade leading edge with a bleeding rate of 2.76%. The vortex structures and flow patterns are compared and analyzed to reveal the controlling mechanism. Subsequently, the axial vorticity and loss evolution is discussed, and the interaction between the primary flow and bleeding air is revealed. It’s found that bleeding slot placed within the blade passage is exposed into a highly static pressure gradient, and this causes the bleeding air flows into and spills out the bleeding slot and leads to unnecessary loss. Moreover, the influence of large bleeding rate and inlet boundary layer is assessed.

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3