Proposed supramolecular structure of lignin in softwood tracheid compound middle lamella regions

Author:

Terashima Noritsugu,Yoshida Masato,Hafrén Jonas,Fukushima Kazuhiko,Westermark Ulla

Abstract

Abstract The structure of lignin in the compound middle lamella (CML) of softwood tracheids differs from that in the secondary wall (SW) in regard to the content of condensed structures (5-5′-biphenyl, dibenzodioxocin and 4-O-5′-diphenyl ether). In an early stage of cell wall formation, random coarse networks composed of thin cellulose microfibrils (CMFs), hemicelluloses, and pectin are formed in the CML, then globular p-hydroxyphenyl/guaiacyl lignin (HG-lignin) is deposited quickly into the network. The globular lignin is assumed to be a micellar aggregate of oligolignols folded at the β-O-4 bond with their phenolic ends on the outer part of the aggregate. When 3D clusters of the globules are deposited on the preformed network of polysaccharides, further growth of the oligolignols by endwise addition of new monolignols is spatially limited, so frequent condensation occurs between growing aromatic ends of adjacent HG-oligolignols within the globule and between the wide contact boundaries of the 3D clustered globules to produce a highly condensed supramolecule in CML. In SW, the folded G-oligolignols are deposited slowly in the narrow tubular space surrounding thick CMFs coated with hemicelluloses. Condensation occurs mostly between adjacent growing ends of the oligolignols within the tubular aggregates. Spatial regulation of condensation of folded polylignols is one of the factors producing a different supramolecular structure for CML lignin than for SW lignin.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3