Photonic contact thermometry using silicon ring resonators and tuneable laser-based spectroscopy

Author:

Eisermann René1ORCID,Krenek Stephan1ORCID,Winzer Georg2,Rudtsch Steffen1

Affiliation:

1. Physikalisch-Technische Bundesanstalt (PTB) , Abbestr. 2–12 , Berlin , Germany

2. 28370 Leibniz-Institut für innovative Mikroelektronik (IHP) , Im Technologiepark 25 , Frankfurt (Oder) , Germany

Abstract

Abstract Photonic sensors offer the possibility of purely optical measurement in contact thermometry. In this work, silicon-based ring resonators were used for this purpose. These can be manufactured with a high degree of reproducibility and uniformity due to the established semiconductor manufacturing process. For the precise characterisation of these photonic sensors, a measurement setup was developed which allows laser-based spectroscopy around 1550 nm and stable temperature control from 5 °C to 95 °C. This was characterised in detail and the resulting uncertainty influences of both the measuring set-up and the data processing were quantified. The determined temperature stability at 20 °C is better than 0.51 mK for the typical acquisition time of 10 s for a 100 nm spectrum. For a measurement of >24 h at 30 °C a standard deviation of 2.6 mK could be achieved. A hydrogen cyanide reference gas cell was used for traceable in-situ correction of the wavelength. The determined correction function has a typical uncertainty of 0.6 pm. The resonance peaks of the ring resonators showed a high optical quality of 157 000 in the average with a filter depth of up to 20 dB in the wavelength range from 1525 nm to 1565 nm. When comparing different methods for the determination of the central wavelength of the resonance peaks, an uncertainty of 0.3 pm could be identified. A temperature-dependent shift of the resonance peaks of approx. 72 pm/K was determined. This temperature sensitivity leads together with the analysed uncertainty contributions to a repeatability of better than 10 mK in the analysed temperature range from 10 °C to 90 °C.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3