Author:
Chowdhury Sudip,Fabiyi James,Frazier Charles E.
Abstract
Abstract
In an effort to advance the dynamic mechanical analysis (DMA) of very small biomass specimens, and/or specimens having poor mechanical integrity, the functional equivalent of pendulum-torsion (tensile-torsion) DMA was compared to parallel-plate compressive-torsion DMA. The solvent-saturated lignin glass transition in yellow-poplar (Liriodendron tulipifera) was generally similar determined by both modes; however, direct data comparisons should be avoided or carefully considered. First-heat glass transition temperatures (T
gs) were relatively similar; however, specimen densification elevated subsequent cooling-mode T
gs by 5–8°C in compressive-torsion. Both modes revealed a first-heat tan δ shoulder; it was more prominent and had grain dependency in compressive-torsion. Below fiber saturation, subambient tensile-torsion DMA was superior; compressive-torsion resulted in an anomalous response, obscuring subambient secondary relaxations. With these differences and limitations in mind, compressive-torsion offers specific advantages. Solvent-submersion studies are simplified because solvent cups are easily devised for torsional rheometers. Specimens lacking mechanical integrity are more easily analyzed. Heavily biodegraded spruce (Picea sp.) was analyzed in the solvent-submersion mode as fibrous mats and the different actions of Gloeophyllum trabeum and Postia placenta were revealed. Very small specimens are easily analyzed in compressive-torsion; tissue maturity effects were revealed in minute sections of switchgrass (Panicum virgatum) stems. Applied appropriately, parallel-plate compressive-torsion DMA will provide new research opportunities.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献