Mapping of IDUA gene variants in Pakistani patients with mucopolysaccharidosis type 1

Author:

Zahoor Muhammad YasirORCID,Cheema Huma Arshad,Ijaz Sadaqat,Anjum Muhammad Nadeem,Ramzan Khushnooda,Bhinder Munir AhmadORCID

Abstract

Abstract Background Mucopolysaccharidosis type 1 (MPS1) is a rare debilitating multisystem lysosomal disorder resulting due to the deficiency of α-L-iduronidase enzyme (IDUA), caused by recessive mutations in the IDUA gene. Lack or improper amount of the IDUA enzyme results in the improper metabolism of mucopolysaccharides or glycosaminoglycans (GAGs). These large sugar molecules accumulate in lysosomes within cells leading to different systemic complications. The estimated global incidence of MPS1 is 1:100,000 live births for the Hurler and 1:800,000 for the Scheie phenotypes. Methods Thirteen MPS1-affected children from 12 unrelated cohorts were enrolled. All coding and flanking regions of the IDUA gene were sequenced. Bioinformatics tools were used for data analysis and protein prediction for clinical correlations. Results Six IDUA gene mutations were mapped co-segregating with the recessive pattern of inheritance including a novel variant. A novel missense variant c.908T > C (p.L303P) was mapped in two affected siblings in a cohort in the homozygous form. The variant c.1469T > C (p.L490P) was mapped in five unrelated patients and c.784delC (p.H262Tfs*55) was mapped in three unrelated patients, while mutations c.1598C > G (p.P533R), c.314G > A (p.R105Q) and c.1277ins9 (p.[A394-L395-L396]) were mapped in a single patient each. Conclusions Multisystem disorders and a wide range of clinical presentation impede the evaluation of patients as well as make it difficult to differentiate between different phenotypes of MPS. Early and accurate diagnosis is crucial for the disease management and implementation of an expanded new-born genetic screening program for inborn errors of metabolism including MPS1. We recommend c.784delC (p.H262Tfs*55) and c.1469T > C (p.L490P) as first-line genetic markers for the molecular diagnosis of MPS1 in Pakistan.

Funder

Higher Education Commission

Publisher

Walter de Gruyter GmbH

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3