Conceptual design of a fixed bed N2O decomposition reactor with a heat pipe heat exchanger

Author:

He Dong1,Bai Xiaoyue1,Tao Hanzhong1,Li Yannan1,Lin Shuo1

Affiliation:

1. College of Energy Science and Engineering , 506244 Nanjing Tech University , Nanjing , Jiangsu 211800 , China

Abstract

Abstract This paper introduces a novel process for decomposing N2O through interstage cooling utilizing a heat pipe heat exchanger. The reactor design involves segmenting the fixed bed reactor into multiple layers and integrating heat pipe heat exchangers between these layers to efficiently dissipate the high heat generated by the upper fixed bed reactor. This innovative approach facilitates the direct decomposition of N2O feedgas with high concentrations, obviating the need for gas dilution. The study conducted in this paper employed Fluent and ASPEN PLUS to investigate N2O decomposition with interstage cooling using heat pipe heat exchangers, as well as decomposition after dilution. A comparison between the two methods was made based on catalyst dosage, temperature uniformity, and reactor energy consumption. The results demonstrate that the proposed method for N2O decomposition via interstage cooling with a heat pipe heat exchanger is a viable option, offering the desired temperature control and enhanced efficiency. Furthermore, this reactor design effectively reduces both catalyst usage and energy consumption, providing substantial advantages over traditional approaches.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3