Kinetic-invariant analysis of dye degradation in an annular slurry bubble-column photo reactor

Author:

Munjal Guncha1,Bhaskarwar Ashok N.1,Chaudhary Amita12ORCID

Affiliation:

1. Department of Chemical Engineering , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India

2. Department of Chemical Engineering , Nirma University , Ahmedabad 382481 , India

Abstract

Abstract Heterogeneous photocatalysis refers to the series of oxidation and reduction reactions on a semiconductor surface by the electrons and holes generated by absorption of light by the catalyst. This method is widely used for the degradation of dyes and their mixtures present in the textile effluent, and involves two main aspects, viz. a photocatalyst, and a photoreactor. TiO2 nanoparticles are well explored and among the best known photocatalysts used worldwide. Annular slurry bubble-column reactor is a commonly used photoreactor for dye(s) degradation. This research paper explores the effects of different parameters like air-flow rate, photocatalyst loading, and initial dye concentration on the dye degradation in an annular slurry bubble-column photoreactor. The results showed that the best dye degradation efficiencies were reported at an aeration rate of 1.7 × 10−4 m3/s and at a catalyst loading of 1.5 kg/m3. Higher the initial concentration of dye, the greater is the time taken for complete degradation and mineralization. A kinetic-invariant method, which is based on the dimensionless representation of existing data to predict the new experimental results, is used to develop a semi-empirical reactor performance equation. It can be used to predict the concentration of dye undergoing degradation in the photocatalytic reactor at any time without a need for further experimentation.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3