Enhanced sonocatalytic degradation of Acid Red 27 with Fe2O3 catalyst: a kinetic study

Author:

Abad Suha12,Aziz Ruqaiya12,Khalil Mohd. Junaid3,Rahman Muhammad Muhitur4,Hossain Mohammad M.23

Affiliation:

1. Department of Chemical Engineering , King Fahd University of Petroleum and Minerals , Dhahran 31261 , Saudi Arabia

2. Interdisciplinary Research Center for Refining and Advanced Chemicals , King Fahd University of Petroleum and Minerals , Dhahran 31261 , Saudi Arabia

3. Department of Chemical Engineering , 30037 Aligarh Muslim University , Aligarh , Uttar Pradesh 202001 , India

4. Department of Civil and Environmental Engineering , 114800 King Faisal University , Al-Hofuf , Al-Ahsa 31982 , Saudi Arabia

Abstract

Abstract This study is focused on elucidating the potential effectiveness of degradation as a method to eliminate dyes from aqueous systems. Specifically, it delves into the influence of ultrasound energy on the degradation kinetics of a dye. The research findings underscore the notable impact of ultrasound energy in accelerating the reaction rate constant (k p), with the degradation kinetics exhibiting a conformity to first-order kinetics. An integral aspect of the study involves the establishment of a robust relationship between time and concentration by integrating the equation governing the degradation of the dye. Additionally, the determination of the rate constant, derived from the gradients of the graphs, attests to the model’s fitting accuracy. Intriguingly, the outcomes of this analysis reveal no discernible structural changes in the dye. The accuracy of the model is further underscored by the establishment of linear relations derived from experimental data. Summarily, this kinetic study provides invaluable insights into the multifaceted impact of ultrasound energy and the Fe2O3 catalytic influence on both the degradation kinetics of the dye. The comprehensive nature of the investigation enhances our understanding of the intricate processes involved, contributing significantly to the broader field of water treatment and dye removal from aqueous environments.

Funder

King Fahd University of Petroleum and Minerals

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3